
The Calculation of Fourier Integrals 

By Guy de Balbine and Joel N. Franklin 

1. Introduction. The numerical calculation of Fourier integrals 

(1.1)~~~~~~~ 1 (x)e@x dx (-co < X < co) 
00 

is difficult for two reasons: (i) the range of integration is infinite (-or < x < o); 
(ii) the integrand oscillates rapidly for large w. 

A complicated but effective method of numerical integration has been developed 
by Hurwitz and Zweifel [1]. We will show that this method is equivalent to a certain 
trapezoidal rule. We will show that an Euler transformation approximates the 
Fourier integral by infinite series which are convergent and which are asymptotic 
for large w. 

2. The Method of Hurwitz and Zweifel. If we write f(x) as the sum of an even 
function and an odd function 

(2.1) 2If(X) + f(-x)] = 21t(x), 21f(x) - f(-x)] = 21W, 

the integral (1.1) takes the form C(X) + iS(co), where 

(2.2) C(@) = f ,6(x) cos X x dx, S(c) = f +(x) sin xx dx. 

In these integrals we make, respectively, the changes of variable 

(2.3) x = (7r/c)y, x = (7r/c)(y + 1). 

Then the integrals take the forms 

C(@) = 2 fQ(-)cosry dy; 

(2.4) 
(2.4 )S(co) = 2aLf (\ (Y + ))cos y dy. 

Using the transformation 
oo 1/2 00 

f x(y) dy = Z x(8 + n) dy, 

which is valid if summation and integration may be interchanged, we find from (2.4) 
1/2 

CMo) =- j (y, w)COS wy dy; 
(2.5) 2o -1/2 2 1/2 

S(W) =- 2 -(Yy,) cosy dy, 
2w 1/2 
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where 
00 

Y(Y' W) = Z (_)n 'P y + n 
(2.6) 0n--oo 

LT(YCO) = Z (-) y + n +- n==-oo 02 
As functions of y both y and a satisfy the identities 

(2.7) F(y) F(-y); F(y + 1) -F(y); F(2 + y) -F(2 - y). 

A function F(y) with the properties (2.7) has period 2. If F(y) has a convergent 
Fourier series 

00 

F(y) = Z [( ) cos kry + ( ) sin kiry], 
k-0 

then only the terms cos kiry, with k odd, have nonzero coefficients. Thus, 1Y(y, co) 
and a(y, co) have Fourier series of the form 

00 

(2.8) EI ( ) cos (2v + 1)ry 
Y==0 

where the coefficients ( ) are functions of co. 
Hurwitz and Zweifel now develop a variant of Gaussian quadrature which is 

exact when y(y, co) or a(y, w) is replaced in (2.5) by the truncated Fourier series 
2N-1 

(2.9) 2 a,(w) cos (2v + 1)7ry. 
V=0 

Every cos (2 v + 1)7ry is an odd polynomial in cos 7ry: 
v 

cos (2v + 1)7ry = 5 ( ) (cos 7ry)ii+. 
,4=o 

Therefore, if a series (2.9) is multiplied by cos zry, the result may be expressed in 
the form 

2N-1 

(2.10) cos2 7ry E av (W) (cOS2 7ry)v. 
V=o 

Thus, we must look for the rule of Gaussian quadrature which is exact for integrals 
of the form 

1/2 2N-1 

(2.11) I(c) -| cos2 ry E a (W)(cos2 7ry) dy. 

Let u = cosX iry. We require orthogonal polynomials ro(u), rP(u), * * N, I'(u) 
satisfying 

1/2 

(2.12) f urj~i(u)rk(u) dy = 0 for j # k. 

[Hurwitz and Zweifel use the notation I'j(cos 7ry) instead of our Pr(u) = 

rj(cos2 7ry).] Explicitly, we have 
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( 2. 13 ) Pk( u) = cos (22k + l)itry = T2k+1 (IU") 
cos iry 

where Tn is the Tchebicheff polynomial of degree n. Let ul > u2 > ... > UN be 
the zeros of FPN(U); explicitly, 

(2.14) uj = cOS2 ry with yj = (2j - 1)/(2N + 1)2 (j= 1, , N) 

Let f(u) be any polynomial of the form 
2N-1 

(2.15) f(u) = E aZ u 
v=O 

as in (2.11). Let f(u) be interpolated at ul, .**, UN by a polynomial p(u) of 
degree <N - 1: 

(2.16) f(u;) = p(Uj) (j = 1, *-., N). 

Then 
1/2 1/2 

(2.17) f uf(u) dy = up(u) dy 

because 

f(u) - p(u) = PN(u)q(u), 

where the quotient q(u) has degree <N -1, so that 
1/2 

J uFN(u)q(u) dy = 0. 

By the Lagrange interpolation formula, 
N 

(2.18) p(u) = rj(t4)f(uj) 

where 7rj(u) is the polynomial of degree N - 1 satisfying 1j(Uk) = bjk; the poly- 
nomials 7rj(u) are independent of the function f(u). The identity (2.17) now yields 

1/2 N 

(2.19) f uf(u) dy = Ej f(uj) 
O ~~~~j=l 

where cl* CN are the Christoffel numbers 
1/2 

(2.20) Cj= U7r(U) dy (j =1,.*,N). 

The Christoffel numbers are independent of f(u). The identity (2.19) holds for all 
polynomials f(u) of degree ? 2N - 1 in the variable u = cos 2 ry. 

Hurwitz and Zweifel suggest that the Christoffel numbers [which they call 
Wj(N)] be determined by settingf(u)- u"' (v = 1, * , N) in the identity (2.19). 
The resulting system of equations 

1/2 N 

(2.21) f u dy = E (u) -ICj (v =1, N) 
n a ~~j1 
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determines the cj uniquely because 

det (uj- )j ^-l,---,N = (uj - Uk) id 0. 
j>k 

The left-hand side of (2.21) has the explicit value 

1 cOS2^ ry dy = 135 (v-1) ( 1, N) 

and the numbers uj were given in (2.14). In their paper [1] Hurwitz and Zweifel 
recommend that the cj = Wj (N) be evaluated numerically for any given N. 

The final quadrature formulas for the integrals C(X) and S(w) are 

(2.24) CN() ; SN (o )C 
c j=1 COS iryj co j=l COS 7ryj 

We have CN(w) = C(co) and SN(c) = S(w) when y and a have finite Fourier series 
of the form 

2N-1 

E a,(w) cos (2v + 1)7ry. 
V=0 

3. Simplification of the Hurwitz-Zweifel Method. First we will show that 
the Christoffel numbers cj = WjI(N) have the values 

(3.1) = (2N + 1)-1 COS2 (j = 1 N) 
where yj = (2j - 1)/2(2N + 1). 

Proof. Define the functions 

(3.2) P-i (u) = cos2v7ry + (-1)v+( = 1, ,N). COS 2ry 
2 

We assert that pvI(u) is a polynomial of degree v - 1 in the variable u= COS 7ry. 

This is true because the numerator of (3.2) is a polynomial in u of degree v. Further, 
the numerator vanishes when u = 0, which occurs when y = 2. Since the de- 
nominator of (3.2) is u, the fraction (3.2) is a polynomial of degree v-1. 

To prove (3.1), it is sufficient to show that the N values (3.1) satisfy the N 
equations 

1/2 N 

(3.3) f upV-,(u) dy = X PV-i(Uj)Cj (V = 1, * X N) 

because these equations are true if and only if the equations (2.21) hold. The left- 
hand side of (3.3) equals 

1/2 
(3.4) [cos 2vry + (1)v+1] dy 1)+1 (v = 1,... ,N ). 

Substitution of (3.1) and (3.2) in the right-hand side of (3.3) yields 
N N 

(3.5) E p.-I(uj)cj = Z [cos 2 Pryj + (-1Y +1](2N + 1)1. 
j~i j=1 
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Let P = wzr/(2N + 1). Then, since 0 < A < r/2, 
N N 

E cos 2vryj = Re E exp (2j - 1),3i 
j=1 j=1 

N-1 
= Re e: E (e: ) 

j=O 

= Ree0i(e2N - 1)/(e 2-1) 

= (sin 2N/3)/(2 sin 3). 
But 

sin 2Nfl = sin (2NvPr/(2N + 1)) = sin ( Pr - A) = (_ +'sinfl. 

Therefore, the sum (3.5) equals 

((-1)V+'[1 + N](2N + 17)' = 2(- )val. 

Since the value (3.5) for the right-hand side of (3.3) equals the value (3.4) for 
the left-hand side, formula (3.1) is now proved. 

THEOREM 3.1. Let Ay = 1/p, where p is any positive integer. For any function 
f(y) define the trapezoidal sum 

TI[Ay;f(y)] = Ay[2f(-2) + Ef(-l + (2 ) Pf Q)]f 

Let CN(CL) and SN(w) be the Gaussian quadrature sums (2.24). Then 

CN(C) = (w/2w)T[(2N + 1 )7-1; y(y, c) cos ry]; 

SN(CO) = (/j2w)T[(2N + 1)-'; r(y, w) cos ry]. 

Proof. Set Ay = 1/(2N + 1). By (3.1) and (2.24), 
N 

(3.7) CN(w) = - (Ay) Z ,(yj, W) Cos Tryj 
Wo i-1 

where yj = (j'- )Ay. Since y(y, w) is an even function of y, we have 

(3.8) CN(W) = (Ay) a ( + PAY, C Cos 7 -- + uY 

because 

-2 + AY = Yj for v = N + j and P = N - j +1. 

The sum (3.8) equals the first trapezoidal sum (3.6), except that the terms involving 
f( 2?) are missing. But these terms equal zero when f(y) = y(y, c) cos wy. This 
proves the first identity (3.6). The second identity is established by the same 
reasoning applied to f(y) = o(y, w) cos iry. 

We will now express the Gaussian sums CN(W), SN(W) in terms of the functions 
qP(x), O(x) which appear in the original Fourier integrals (2.2). We will show that 
CN(co) and SN(w) are directly expressible by means of the simplest of all approxi- 
mations to a Fourier integral 

00 

Lf(x) exp (-licox) dx, 
00 
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namely 
00 

(3.9) F[XO, IAx, w; f(x)] Ax f(xo + VAX) exp (iw (xo + YSS) 

THEOREM 3.2. Let CN(W), SN(w) be the Gaussian sums (2.24). Let 'y(y, w) and 
a (y, w) be defined for real c 5 0 by convergent series (2.6). Then 

CN(W) = 'F[7r/2(2N + 1)cw, w/(2N + 1)w, w; t(x)]; 
(3.10)2 

SN(W) = (i/2)F[O, ir/(2N + 1)w, co; (x)]. 

Proof. Let Ax = ir/[(2N + 1)w] = (r/cw)Ay. By (3.8), 
2N 

(3.11) CN(cW) = 21 AX ZY -2 + VAY, W) cos w(-2 + VAY). 

In this sum we may use the lower limit v = 0 instead of v = 1 because the term 
with v = 0 equals zero. From (2.6) we have 

(3.12) CN(w) 1- Ax E (_)Ny (_ ( + y + n COS 7r ( + . 2 v==O n=-00 coJ 2 

Since Ay = 1/(2N + 1), and since (-_)cosSrG = cos7r(0 + n), 

(3.13) CN2.) oAX Z (i,(-+ ,AYfl COS r(- + VAY 
2 p=-00 \W 2 // 2/ 

Set v =N + 1 + (-x < < oo). Then 

1r(2+ vAy) 
2 

c, N+I ( + 2) 
. 

Therefore, 
00 

(3.14) CAN(W) = 12AX Z t((# + 21)AX) COS( + 2? )AX. 

Since V1(x) = ,1(-x), we have 

xt'(G, ? 2)Ax) sin co ( + -),Ax = -p((,L' + )Ax) sin 4(1' + -)Ax 

when t' = -A - 1 (A = 0, 1, * *). Therefore, cos w(,u + 4)Ax may be replaced 
by exp [-ic(A + ')Ax] in the sum (3.14). This proves the first identity (3.10). 

For SN(W) we have, corresponding to (3.11), the formula 
2N 

(3.15) SN(CO) = 2AX Z(- 2 + VAY, W) cos I-T + vAY). 

The series (2.6) for o-(y, w) now yields 

(3.16) SN(W) = Ax, E E (-)) - (v\y + n)) sin rvly. 2 v=o n=/ + i y 

Since (_)f sin irO = sin ir(O + n), and since Ay = 1/(2N + 1), 
00 

(3.17) SN(W) - 21AX 1: O(vAx) sin cvxv. 
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Because +(x) = 0(-x), sin wpAx may be replaced by exp (-iwvAx). This com- 
pletes the proof. 

COROLLARY 3.1. We have, equivalent to (3.10), the identities 
00 

CN() = AiX E( + 2 AX) Cos W (,u + I) Ax; 

(3.18) 00 

SN (W) = Ax E Z (vAx) sin wvAx, 

where Ax - 7r/[(2N + 1)w]. 
Proof. These identities are restatements of (3.14) and (3.17). 

4. Estimation of the Remainder. In the preceding section we showed that the 
method of Hurwitz and Zweifel is equivalent to the use of an infinite trapezoidal 
sum F[xo, Ax, w; f(x)] to approximate the Fourier integral 

00 

(4.1) F[co;(x)] = ff(x)e i0xdx. 

Given f(x), we wish to estimate the remainder 

(4.2) R[xo , Ax, c;f(x)] = F[xo , Ax, co; f(x)] F[; f(x) 

We wish also to examine different rules of numerical integration, for example, 
Simpson's rule 

(4.3) FAxo,Ax,c;f(x)1 = 2Ax 2 )(xo + vAX) exp (-iw(xo + vAx)). 
3 v even v odd 

The usual local-error formulas for the trapezoidal rule and for Simpson's rule 
are (see [51, p. 73) 

Ax [g(a) + g(a + Ax)] 2 
(4.4) (A+x) X 

_ 

f q 9(x) dx + 12 (a < < a + Ax), 

Ax 
[g(a) + 4g(a + Ax) + g(a + 2Ax)] 

6 
(4.5) a+2,Ax (AX)5 (4) 

= f g(x) dx + 90 g(4) (a < ?s < a + 2Ax). 

These formulas suggest this conclusion: For small Ax Simpson's rule must be two 
orders of magnitude more accurate than the trapezoidal rule. A simple consideration 
of symmetry will show that this conclusion is false when the formulas (4.4) and 
(4.5) are applied an infinite number of times to approximate an infinite-range 
integral fJn g(x) dx. In our context the function g(x) has the particular form q(x) = 

f(x) exp (- iwx), but that is irrelevant. Using the definition (4.3), define the error 
in Simpson's rule: 

(4.6) Ro[xo, Ax, w;f(x)] = Fg[xo, Ax, co;f(x)J - F[w;f(x)]. 
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From the definitions of F and F8, we have 

(4.7) F[xo, Ax, w; f(x)] = 2Fjxo, AX, w; f(x)] + 2Fd[xo + Ax, Ax, w; f(x)]. 

Therefore, 

(4.8) R[xo, Ax, co; f(x)J I R.[xo, Ax, c; f(x)J + 
R. [xo + A, A, ;f(x) j. 

Thus, the remainder in the trapezoidal rule is the arithmetic mean of two remainders 
for Simpson's rule with the same Ax. Therefore, the trapezoidal rule is at least as 
accurate as Simpson's rule for infinite-range integrals. Remarks of this nature have 
been made by Y. L. Luke [8]. 

A simple generalization shows that the trapezoidal rule is at least as good as any 
other rule of quadrature for infinite-range integrals. Here we assume equally spaced 
abscissae. Let 

0C 

(4.9) Gc[xo, Ax; g(x)J = (Ax) E cpg(xo + vAx) 
P=_00 

be any sum approximating integrals fra g(x) dx. Assume that the coefficients c, are 
independent of xo, Ax, and g(x), and suppose that the coefficients are periodic: 

cv,-cp . For Simpson's rule, 

Co=, c1 =4; p = 2. 

We shall also require the consistency-condition 

(4.10) cO + cl + + cp-=P. 

Let 
05 

(4.11) G[xo, Ax; g(x)] Ax E g(xo + vAx) 

and define the associated remainders 

(4.12) Rcfxo, Ax; g] = G,[xo, Ax; g]-f g(x) dx; R = G- 
co 

Then the periodicity and consistency of the coefficients imply 

P-1 

(4.13) R[xo, Ax; g] = - I, Rc[xo + uAx, Ax; g]. 
p ,=O 

Thus, as Ax -> 0, R goes to zero at least as fast as the remainders Rv. 
One may also write R, in terms of R: 

p-1 

(4.14) Rc[xo, Ax; gJ = , cAR[xo + AAx, pAx; g]. 
,=o 

The increment Ax in the remainder Rc is replaced by the larger increment pAx 
(p > 2) in the remainders R. Thus, from the identity (4.14) we may not conclude 
that, as Ax -* 0, R, goes to zero at least as fast as the remainders R. 

To obtain a useful form for the remainder (4.2) in the calculation of Fourier 
integrals, we shall express the remainder in terms of the unknown Fourier integral 
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F[w; f]. To do this we will use the Poisson summation formula. Let h(x) be defined 

as a function of bounded variation for - o < x < so. Let the infinite series 
00 

E h(v) 

be convergent. If any integer v is a point of discontinuity of h(x), assume that h(v) 
is the arithmetic mean of the limits h(v i4- 0) from right and left; more stringently, 

assume that the function 

(4.15) x-'[h(zv + x) + h(z - x) - 2h(zv)] 

is Lebesgue-integrable in the neighborhood of x = 0. (This will surely be true if 

(4.16) h(v) = 4[h(z + 0) + h(v - 0)] 

and if h(x) has derivatives h'(v + 0) from the right and from the left at x = P.) 
Assume that the Fourier integral 

(4.17) H(X) = fh(x)e-i"xdx 
00 

converges for all w which are multiples of 2ir. Then a well-known theorem of Poisson 

states: 
00 

(4.18) Z h(G) = lim Z H(2irm). 
v=-oo M-0o ImI <M 

To obtain F[xo, Ax, w;f], as defined by (3.9), set 

(4.19) h(x) = (Ax)f(xo + xAx) exp (-iw(xo + xAx)). 

The Fourier transform (4.17) equals 
00 

(4.20) H(X) = f (Ax)f(xo + xAx) exp (-iCo(xo + xAx))e-ix dx. 
00 

The change of variable x = xo + xAx gives 

H(X) = exp (iXxo/Ax) f f() exp (-i(w + X/Ax)t) d7. 
00 

In the notation (4.1), this expression equals 

(4.21) H(X) = exp (iXxo/Ax)F[w + X/Ax;f]. 

The theorem of Poisson now yields 

F[xo, Ax, w; f] = lim E exp i2mx [ 2W m ; 
(4.22) M-0 ImI M Ax L Ax 

= F[W; ] + R[xo , Ax, w; f] 

where, if d = 2irxo/lx, 

f4.23 fco = im~FK + 2mlrfl -imp [ 2m-r ]l (4.23) R[xo,,Ax, w;f] - e mF W ___f+ _mF 1 
Mi=1 

eL Ax' + Fxf; 
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We have just proved the following theorem: 
THEOREM 4.1. Let f(x) be of bounded variation for - o < x < oo. If a is ally 

point of discontinuity of f, assume that [f(a + x) + f(a - x) - 2f(a) J/x is Lebesgue- 
integrable in the neighborhood of x = 0. Suppose that the Fourier integral 

00 

(4.24) F[k ;Af]=j f (x)e- i dx 
00 

converges for all real co. Let the in inite-series 

(4.25) F[xo, Ax, c;f = Ax 5, f(xo + ,cAx) exp (-iw(xo + vAx)) 
P=_00 

converge for some fixed xo, Ax > 0, and c. Then 

(4.26) F[xo, Ax, w; f] = F[co, f] + R[xo, Ax, c; fj, 

where R is the convergent series (4.23). 
We can immediately apply this theorem to obtain an expression for the re- 

mainder when the series CN(CO) of Hurwitz and Zweifel is used to approximate the 
cosine-integral C(w), or when SN(CW) is used to approximate the sine-integral S(c0). 
From (3.10) we find 

(4.27) CN(w) - C(C) R[xo , Ax, co; 4'(x)j 

with 

xo = "AX, Ax = 7r/(2N + 1)>. 

Since i/(x) is even, we have 

F F[co; {(x)] C (@) = C(-w). 

Therefore, by (4.27) and (4.23), 
00 

CN(w) - C(c) = E (-)m{C([2m(2N + 1) + 1]w) 
(4.28) M=n- 

+ C([2mn(2N + 1) - 1]w)}. 

For the sine-integral we have 

.02 S(co) =fq(xsin cx dx V[co; 0(x) = - c(- ). 

Now (3.10) and (4.23) give 

SN(c) - S(w) = (i/2)R[0, ir/(2N + 1)co, c; q(x)], 
00 

(4.29) SN(w) - S(w) , { S([2m(2N + 1) + 1]j) 
m=l 

- S([2m(2N + 1) -1]w)}. 

The remainders for other rules of quadrature can be found at once from the 
identity (4.14). For example, in Simpson's rule we have 
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GSfxo, Ax; f(x)e]wx] 

(3 v(Ax)Q + ) fZ(xo + vAx) exp (-iw(xo + vAx)) 

= f f(x)e-iw dx + Rc[xo x;f(x )exI] 

where 

(4.31 ) Rc[xo, Ax;f(x)e-xI = 4-R[xo, 2Ax; f(x)e-(@xI 

+ 3R[xo + Ax, 2Ax; f(x)e "T]. 

But R[xo Ax; f(x)ee-tz] R[xo, Ax, w; f]. Therefore, by (4.23), the remainder in 
Simpson's rule is 

R,[xo , Ax; f(x)ei"z] 

(4.32) = l{exp (i1x)Q3 + (1)m 2 )F [, +mr 

+ exp (-im7rxo/Ax) (+ (-1)m-)F [o - 

A comparison of the remainders (4.23) and (4.32) shows a superiority of the 
trapezoidal rule. Suppose that the function f(x) is band-limited, as in many en- 
gineering applications. Assume, for some ? > 0, 

(4.33) F[w;f] 0 for w > U. 

Let - Q < co < U. Formula (4.32) shows that Simpson's rule is exact, i.e. the 
remainder is zero, if 

w-7r/Ax < - and w +7r/Ax> 

which is the case if 

(4.34) Ax < 7/( W'+ l) 

But (4.23) shows that the trapezoidal rule is exact if 

(4.35) Ax < 27r/(j wj + U). 

Thus, Ax may be taken twice as large in the trapezoidal rule. The next theorem states 
that the tolerance (4.35) uniquely characterizes the trapezoidal rule. 

THEOREM 4.2. Let c, (v = 0, h1, h2, * * * ) be absolute constants. Let ? > 0. 
Let B(2, c) be the class of functions f(x) for which the series 

00 

(4.36) Ax I cjf(xo + vAx) exp (-iw(xo + vAx)) 
,V=-00 

converges when xo is real and Ax > 0 and - ? < w < Q; and for which the Fourier 
transform 

(4.37) F(w) = ?:f(x)e"iwzdx 
xo 
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is piecewise continuous and piecewise continuously differentiable for - < co < Q. 
with F(w) - 0 for I co I > U. Assume that, when -Q < c < U, the convergent series 
(4.36) equals the Fourier integral F(c) for all f(x) in the class of band-limnited func- 
tions B(Q, c) for all Ax < 2ir/(f Io I + i). Then all c. = 1. 

Proof. Given the coefficients c, ( = 0, i 1, ** ) and the frequency-limit Q > 0, 
define 

(4.38) f(x) = sin (x - o- jAx)/7r(x - xo - jAx) 

where j is an integer and where Ax = ir/Q. This function has the Fourier transform 

F(cw) = exp (-ico(xo + jAx)) (-Q <co < Q) 

F(w) 0 ( > i). 

Further, for v- = 0, 1, * * v 

f(o + vAx) =O if v #j, 

(4.40) f(xo + jAx) = i/:. 

Therefore, f(x) lies in the class B((Q, c). 
The infinite series (4.36) has the value 

( Ax)cj(Q/r) exp (-icw,(xo + jAx)) = c; exp (-ixw(xo + jAx)). 

Since 

Ax = r/Q <27r/(Ico +Q) when -Q < o< 

the hypothesis of the theorem requires that the series-value (4.40) equal the 
Fourier-integral value: 

c, exp (-ic(xo + jAx)) = F(w) = exp (-ico(xo + jAx)) (-Q < c < S2). 

Therefore, cj = 1. Since j can be any integer, the theorem is proved. The next 
theorem is a converse. 

THEOREM 4.3. Let Q > 0. Let B(Q) be the class of continuous functions f(x ) for 
which the series 

00 

(4.36.1) Ax~ E f(xo + vAx) exp (-icx(xo + >Ax)) 
V=-00 

converges when xo is real and Ax > 0 and -Q < co < K; and for which the Fourier 
transform (4.37) exists and is square-integrable, with F(w) 50 for I X I > U. Then, 
when -0 < w < U, the convergent series (4.36.1) equals the Fourier integral F(W) 
for all f(x) in the class of band-limited functions B(Q) for all Ax < 27r/(I c I + 2). 

Proof. We have proved this theorem, in the paragraph preceding Theorem 4.2, 
under the assumption (in Theorem 4.1) that f(x) is of bounded variation for 
- o < x < oo. We must deduce that the total variation V of f(x) is finite under 
the hypothesis of Theorem 4.3. For all x we have 

1 

(4.41) f(x) = 2- f F(w)e" dco. 

The hypothesis that f(x) is continuous is made to insure that the identity (4.41) 
holds for all x, and not merely except for a set of measure zero. 
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The function (4.41) is continuously differentiable, and the total variation of f(x) 
equals 

(4.42) V Ifj(x) i dx < +oo. 
00 

But 

If(x) I = 2 L F(c* )iwei"xdw* 

< 
f F(co?)I I dwo M < 00. 

Therefore, by the hypothesis that F(w) is square-integrable, and by Plancherel's 
Theorem, 

v Lf Iff(X) i2dx=2 Mf I F(w)12W 2dw <0 . 

This completes the proof that V < 00. 

The superiority of the trapezoidal rule is not restricted to band-limited functions. 
This point is shown in a general way by the identity (4.13), but we wish to present 
a specific example. Let 

(4.43) f(x) = /(x2 + 1) (o < x < 0o). 

The Fourier transform is 

(4.44) F[= ;f(x) re 

By (4.23), the remainder in the trapezoidal rule is 

R[xo, Ax, w; f] = ir I {exp (im2irxo/Ax) exp (- + 2mr/ A ) 
(4.45) M7=1 

+ exp (-im2rxo/Ax) *exp (-co - 2mir/Ax 1)1. 

As Ax -4 +0, we have 

(4.46) R[xo, Ax, c; f] = (exp (2irixo/Ax)e-' + exp (-2rixo/Ax)e') 

*exp (-27r/Ax) + O(exp (-4ir/Ax)). 

To find the error in Simpson's rule with the same increment, Ax, we apply (4.14) 
with 

(4.47) CO = 2, Cl 4; p = 2; g(x) = f(x)e-ix = e XAX/(xl + 1). 

Substitution of (4.46) in (4.14) now yields 

R,[xo 
X Ax; g] = 2R[xoX 2Ax; g] + 4R[xo + Ax, 2Ax; g] 

2= R[xo, 2Ax, A;f] + j4R[xo + Ax, 2Ax, w; f] 
(4.48) 

f 

= -3(exp (lrixo/Ax) e- + exp (-grixo/Ax)e') exp (-ir/Ax) 

+ O(exp (-2,r/Ax)). 
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Thus, as Ax + 0 in this example, the error in Simpson's rule is much larger than 
the error in the trapezoidal rule. 

5. The Convergent, Asymptotic Euler Series. Finally we wish to present a method 
for computing Fourier integrals which can be used for all nonzero frequencies. 

For small w or for large w one could compute the Fourier integral in a straight- 
forward way. For small co the integrand oscillates very slowly, and there is no par- 
ticular problem. An upper limit xi and an increment Ax can be chosen so that (say 
for S(w)) 

(5.1) L sin wx4(x) dx 

is a good approximation to S(w) for 0 ? < coo ; and then the finite-range integral 
(5.1) could be computed, say, by Simpson's rule. If w0 is small, the increment Ax 
need not be very small. 

For uniformly large co, there also is no great problem. There are asymptotic, 
divergent series which are very good numerically. For example, for S(w) repeated 
integration by parts yields 

(5.2) fsin xWk(x) dx/ (0)- (?) ? (?)- 
Co) co 

if all derivatives of q are absolutely integrable. The example of o(x) = 17(1 + x2) 
illustrates that the asymptotic series (5.2) is usually divergent. This method, there- 
fore, is useful only for large w. The series (5.2) has the added practical disadvantage 
of requiring analytic differentiation of the function +(x), a process which is not 
easy to implement in a digital-computer subroutine for general usage. We will now 
show that a summation formula of Euler, applied to the trigonometric sums CN(), 
SN(CO), yields series which are asymptotic for large X and convergent for all c. 
These series can be used for all w varying between some small and large positive 
limits, CO __ W __ . 

THEOREM 5.1. Let ao - a, + a2 - a3 + * be a convergent series. Let 

Sak= ak-ak+1, 2ak = ak-2ak+l+ ak+2, 

(3a) = ak -3ak+l + 3ak+2 - ak+3, 

Then 

(5.4) ao-a, + a2-a3 + =a o + ao + & ao + 1 3aO? 

Proof. This is Euler's transformation. The proof that the series on the right 
converges and equals (-)k ak provided only that the series Z (-)kak con- 
verges, was first given in 1901 by L. D. Ames [7]. An exposition of the proof appears 
in Knopp [6, p. 245], to which we refer the reader. 

For later reference, we note the result, in Knopp's exposition, that the remainder 
after m terms of the Euler series is the convergent series 

(5.5) Rm = (1/2m)(6mao - 6aa1 + 6ma2 - 6am~a3 + ...) 

The identity (5.4) states that R,, -* 0 as m - oo. 
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To prove the asymptotic character of the Euler series, we shall later use this 
elementary result: 

LEMMA 5.1. For x > 0 let a(x) have continuous derivatives of order ?m + 1. 
Let Rrn be a convergent series defined by (5.5), where ak a(k). Then 

00 

(5.6) Rm R ? 2-m f a(m+l)(x) I dx 

if the infinite integral converges. 
Proof. We first remark that 

1 1 

(5.7) aak (_)m a ( (k + ul + + um) du, * dum. 

This identity follows by induction: it is clearly true for m = 1; and if it is true for 
any m, it implies 

bMrnlak =_ (nak+l - a) 

11 

= (_m~ l r f f [a(M)(k + 1 + Ui + + Ur) - a(m)(k + U 

(5.8) + - + urm)] du, . dum 
11 

r (_)M+l ... a "'l(k + Ui + + Ur + Um+i) du, 

* dum durn+ 

From (5.7) we have 

| a2 - a - a2, Il 
1 1 2v+1 

M+l (5.9) - f *.. * I a(rn~l (y + ul + + urn) dy dui *, * du. 

j1j 1 2v+2 

Ia(rml)(y + u + + um) rndydul ..dum 

Summation of this inequality for v = 0, - , n yields 
n 
Z I 3a2v - 2v + 1 
0=0 

1 1 2n+2 

(5.10) ? J. .jj I a(rm+l(y + ui+ + um) I dy du," dum 

<I I..a(m+l)(y + U1 + + um) dy du, ... dum. 

Let 
00 

(5.11) I(s) =-f I a(Ml)(x) I dx (t ? 0). 

Since the integrand is >0, we have I(t) < 1(0). But the last expression (5.10) 
equals the mean value 
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(5.12) ... I(ui + + um) du,. dum r I(O) = f a(m+)() j dx. 

To bound I Rm 1, we now write 
2n+1 n 

2 > ()k amak = 2 1 (bma2v -ma2,+l) 
k=O ;-0 

n G 
< 2" bma2, -bma2,+l ? < 2-m I a(nl)(x) I dx. ;-o 

Letting n -* oc, we find the required inequality (5.6). 
LEMMA 5.2. Let w > 0. Assume the convergence of the trapezoidal sums 

CN(c) = AX Zt4(G(u + 2)AX) cosW z(u + 2)zAX, 

(5.13) 
A 

SN(c) = Ax Z0(vAx) sin wv;Ax, 

where Ax = r/((2N + 1)w). Let 4JJ(-x) = 7JJ(x). For 1 < v < 2N let 

c(k) = Ck = 14Q((7/r)[v/(2N + 1) + k -]), 
(5.14)22 

s(k) = Sk = 0((7r/c)(v/(2N + 1) + k)) (k = 0 1, 2, ...). 

Let bCk = Ck - Ck+1 . Then 
2N 

CN(&M = r Z(aCO-5C +a5C2 -5C3 + sin\' ___ 

(5.15) (2N + 1)c , - +12N +1 
2n 

SN(M) = 7r( + ) (SO-O1mS2-S3 + * sin vlr 

Proof. The identity (5.15) for SN(W) follows immediately from the definition 
(5.13) because, for v = 1, *., 2N, 

(5.16) sinw(v + (2N + 1)k)Ax = (-)ksin vl./(2N + 1) (k 02 1,..). 

From the definition (5.13) for CN(w), we have 

CNG(W) = AX E &( (,u + 2 AX) oCOS (,U + 2)1x. 

Letting u = N- v(-oo < v < oo), we find 

CN(&.) 1 si n _(2N 

(5.17) 2 (2N + 1 (WG 2 2N ) )i2N + 1 

- N ( r (_= 1 + 2))f sin 2N+ 

The identity (5.15) for CN(co) now follows from (5.16). 
We will now obtain convergent Euler expansions for the sums E (-)k Ck and 
3(-)kSk . The sum ,I (- ) kCk must be treated with special care. The first term, 
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b&o, involves some s, with negative arguments. In the extension of 4&(x) as an even 
function for - co < x < co, discontinuities in the derivatives of ,1 may appear at 
x = 0. For example, if 41(x) = exp (-x) for x >_ 0, the even extension exp (- I x 1) 
has discontinuous derivatives at the origin. To insure that the partial Euler sums 
behave well as co -* oc, it is important to require that 4&(x) have continuous deriva- 
tives only for x ? 0. Therefore, we will isolate the term beo . Thus, we will use the 
Euler expansion: 

O00 00 

(5.18) Eco + Z ( )kack = Sce - E2 a ncl 
k=l n=1 

For E (-)k Sk there is no such difficulty, and we simply write 
00 00 

(5.19) E ( )k S =E 2 anso . 
k=O n=O 

The identities (5.18), (5.19) are direct applications of the Euler-Ames Theorem 5.1. 
Now define the remainders rrn and Pm 

x rn-1 

(5.20) E 2 =-na = A 2-nan1 + rm(G) (m > 1), 
n=1 n=1 

00 m-1 

(5.21) E 2-'n-1 =o E 2-n-' so + Pm(C) (m > 0), 
n=O n=O 

where on=1 = 0= . To obtain the behavior of rm(co) as co > o, we use the 
representation 

(5.22) rm(w) 2m+1 Z ckark+1 (m > 1) 
k=O 

which follows from (5.5). We can now use Lemma 5.1 if we define 

(5.23) rm 2Rm, Ck+l = ak, X &(ir/r4(V/(2N + 1) + x + 2)) = a(x). 

We have 

(d )m+ a(x) = (r)m+ (m+1) (r (N v 

The inequality (5.6) of Lemma 5.1 now yields 

(5.24) i rm ? < 2-m+1 J () m+) dx 

where = (ir/w)((v/(2N + 1)) + x + a). Now, for v _ 1 and X > 0, 

t _?(v/(2N + 1) + 2)ir/ > 0 when x _ 0. 
Therefore, (5.24) gives 

(5.25) rm rI 2_m' (>) f0 I ) d (in > 1). 

To estimate pm(W) as co - o, we use (5.5) to write 

(5.26) Pm(?) = 2 E ( )kSmk (m > 0). 
k==O 
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To use Lemma 5.1, we let 

(5.27) Pm = Rm, Sk = ak, 0((ir/co)[v/(2N + 1) + x]). 

We then conclude 

(5.28) 1pm < 2- (ir) f( d ( ) (nm >? 0). 

We have thus proved the following theorem: 
THEOREM 5.2. For x > 0 let {(x) and (or) O(x) have mn + 1 continuous deriva- 

tives, with 
00 Go 

(5.29) f | I 1+ )(x) | d < 0 fI ( m+1 (x) I dx < 30. 

For v = 1,2, ... , 2N and k = 0 1, 2, ... define Ck and Sk by (5.14), where 1( -x) = 

4A(x) in the definition of co . Let the series 

(5.30) ()aCk and E (-)kSk 
k==O k=O 

converge for all sufficiently large w > 0. Let in be fixed. Then as co o 
00 m-1 

(5.31) E k = bCo - E 2 5 cI + O( m) ( _ 1), 
k=O n=i 

00 m-1 

(5.32) Z ( kSk = Z 2n1 anso + 0( m) (ib >? 0). 
k=O n==O 

If m -* o, for fixed co we have convergence (5.18), (5.19). 
These results give a numerical method for computing the integrals 

C(W) = f ,(x) cos wx dx, S(G) = f +(x) sin wx dx. 

First we approximate the integrals by trapezoidal sums CN(W), SN(WC); the errors 
CN - C and SN - S are given in formulas (4.28) and (4.29). In the forms (5.15) 
the trapezoidal sums CN and SN involve infinite series Z (-)kcCk and Z (- )Sk . 
These infinite series are approximated by truncated Euler series. For xi ? 1 we find 

(2N + m-1 / 
CN(W) 

= r EDCO - 2 -nanel) sill 2Vr+ O(W-'7'1), 

2N m-1 

E Z 2`16a00,so sin V~ - ? Q(W7inl (2N + 1)w v=1 2=O 2N + 1 

It is important to illustrate the power and the limitations of this technique. First 
we chose the example 

(5.34) C(cw) e x cos wx dx (co > 0). 

Here we happen to know the integral explicitly: 

(5.35) C(co) = 1/(1 + co2). 
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In this case we have 4'(x) = exp (-I x 1), and (5.14) becomes 

Ck = 
I exp -(r/co) I v/(2N + 1) + k - 41 1 (1 - 0); 

(5.36)22 
k = 2(1-e(1 - e exp {-(Xr/@) (v/(2N + 1) + k- )} (? 1). 

The original series E (-)k Sck appearing in (5.15) is 

(5.37) 6co + 2(1 - eI) (z (-)kexp (_))exp{- -(2Nt 1 - 

This series converges very slowly for large co. To obtain the Euler series, we first 
compute 

(5.38) Vc1 = 4(1 - e/)c exp t-( (r/) [vl/(2N + 1) + 241, 

V _ _ _V 

(5-39) 6co - ex K _11 exp{ t + 1 
c 2N + 1 2 )(24 

The Euler partial sum in (5.33) now takes the form 

(5.40) bco -exp + ) E (1 -e 
c o 2N + I n==O 2 

As m -X oc this series always converges faster than E 2-'; and for fixed m, as 
W -a oc, the remainder is O(w-m). An explicit upper bound for the remainder is 
given by (5.25): 

(5.41) r.m I < 2-m+1(./r,)m. 

This upper bound is useful for large w but fails to demonstrate the convergence 
rrn -* 0 when c < 7r/2. 

The following example shows that the Euler series should not usually be used 
when the theory of residues can be used. Consider the integral 

00 x 
(5.42) SW 1 P + I S x dx. 

The odd extension of +(x) = x/(x2 + 1) is, in this case, analytic along the whole 
line - oX < x < oo, including x = 0. Using the theory of residues, one finds the 
familiar result 

S(c) =e (C > 0). 

Thus, 8(w) -* 0 as co oc faster than any power c'm'. The asymptotic relation 
(5.33) for SN(c) still holds, but it gives a very weak result. 

By contrast, consider 

(5.43) C(c) a f + Cox dx. 

The even extension of f,6(x) = x/(x2 + 1) is not analytic at x = 0. The theory of 
residues cannot be used, and in fact 0(w) does not tend exponentially to zero for 
c- co. A few integrations by parts show that 

(5.44) C(Cw) = -1/cow2 + 0(1/Cw4) as i- oc. 
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For the example (5.43) the Euler approximation (5.33) would be an adequate 
approximation to the trapezoidal sum CN . The great error in computing this integral 
C(w) would come in the approximation of C by CN. The first term in the series 
(4.28) for the error CA, - C is 

(5.45) -C((2N + 2)Xco) -C(2Nw)-1/2N2W2 as N-oo. 

Since C(w) does not tend rapidly to zero, it is important to use a fairly large 
number N. 

The last example suggests the use of a correction term. After N has been fixed, 
and after CN(w) or SN(Co) has been computed from an Euler partial sum (5.33), 
additional accuracy can usually be obtained by computing the correction term 

(5.46) -YN = CN(2Nw) + CN((2N + 2)w) 

or, for the sine integral, 

(5.47) UN = SN(2ffN) - SN( (2N + 2)co). 

The terms yv and gN are numerical approximations to the first terms in the error- 
series (4.28), (4.29). The improved value for C(co) will be CN + yN ; the improved 
value for S(w) will be SN + OJN. 
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